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Abstract

In this paper, a new differential quadrature (DQ)-based approach in deducing the discretized equations governing the

static and the dynamic problem of the Euler–Bernoulli beam is proposed. These equations, here called generalized, can be

written easily, also thanks to a lemma, introduced for the first time, which allow a compact writing of the solution. By

means of a careful distribution of the sampling points, the proposed method overcomes the drawback of the element

subdivision where load conditions change. This is particularly useful in the analysis of some multi-degree-of-freedom

dynamic systems, as it will be shown. The cited distribution and the way of generating it allow to generalize the iterative

differential quadrature method, confined, in its initial form, to the two-degree-of-freedom systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the author [1] proposed a method combining the differential quadrature rules with an elements
approach. Even if this method is useful for treating easily some structural problems with complex geometry,
e.g. frame structures, it does not allow good results without breaking the element where external conditions
change, as in the case of discontinuous loads or a load concentrated at certain abscissa. For this reason, one
can say that this method does not agree very much with the spirit of the differential quadrature method
(DQM), which is to reduce the computational effort as much as possible.

DQM is essentially a collocation method, so it has the disadvantage of choosing in advance a certain
number of locations where the equations are satisfied: for many problems in the linear and nonlinear ranges
[2–4], the method is sensitive to the choice of sampling points, in spite of a direct substitution of the boundary
conditions into governing equations.

In recent years, spectral and pseudospectral collocation methods have captured the interest of the scientific
community especially with regard to fluid dynamics and heat transfer [5]. In particular, Legendre and
Chebyshev pseudospectral methods are commonly used for the solution of non-periodic differential equations.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In some cases, spectral methods and the DQM are identical. For example, when applying these two classes
of method to second-order governing equations, the only major difference would be the grid spacing.
Generally, high-order systems with more than one kind of boundary condition at each edge arise in mechanics
problems. The d-type grid arrangement represented the first attempt in applying boundary conditions in
fourth-order systems [6]. The use of d-points causes some inconvenience [7] which it is possible to avoid by
means of a direct substitution of the boundary conditions into the governing equation [8] at the points
immediately neighbouring the boundary. This choice has been proved to be optimal in terms of accuracy and
efficiency of the approach [9].

The present work proposes a method which removes the necessity of breaking structural continuity where
external conditions change. In the spirit of spectral methods, the proposed approach moves from an integral
formulation, but without applying Gaussian integration. The usual quadrature formulas are used, by having
assumed as test functions the Lagrange interpolation polynomials. The sampling points have been chosen as
the zeros of the first-order derivative of shifted Gegenbauer polynomials of a certain degree N and order
l ¼ �1:4. To the best knowledge of the author, a similar choice has not been adopted previously.

This choice supplies a logical continuity with respect to the previous work [2,3] of the author introducing the
iterative differential quadrature (IDQ) method. In its initial formulation, the method applies differential
quadrature rules to discretize the whole space–time domain by using the same distribution of sampling points
in each domain direction and by calculating numerical solution over a succession of identical rectangular
quadrature grids, giving M �N �N points in all, where N is the number of sampling points in one direction
and M is the upper limit of the range over which the numerical solution is sought. Thanks to direct
substitution of the boundary conditions into governing equations, the dynamic analysis of a two-degree-of-
freedom system requires just N ¼ 6. Since the method is sensitive to the choice of sampling points, accurate
results need a careful distribution generated by a particular rule; by fixing two parameters for this rule, one
obtains a distribution which results to be an approximation of the zeros of the first-order derivative of the
shifted Gegenbauer polynomial of degree N ¼ 6 and order l ¼ �1:4, as presented later on.

In this paper, a compact form for the unknown solution of the problem is proposed. This result is achieved
independently of the problem and the distribution considered and formalized in a lemma. The discretized
equations governing the problem of the Euler–Bernoulli beam have been reformulated in an elegant way, also
by using the cited lemma.

The introduction of the so-called generalized loads facilitates the writing of the discretized equations, here
indicated as generalized equations, especially for some cases, as for example, the one regarding a nonlinear
system with a dynamic concentrated load.

In general, with regard to the space direction, for a certain polynomial degree Nz, one can obtain a ðNz � 4Þ-
degree-of-freedom system. This represents a generalization of the IDQ method initially proposed.

In order to show the potentialities of the proposed approach, numerical results for some static cases have
been tabled and the dynamic analysis of a four-degree-of-freedom nonlinear system has been performed by
using Nz ¼ 8 points in space direction and Nt ¼ 6 points in time direction.

An example of dynamic analysis of a four-degree-of-freedom nonlinear system, but performed by a semi-
analytical approach, can be retrieved in Ref. [11].

2. The differential quadrature method: an overview

The aim of the method is to approximate the derivative of the solution function at a certain point by means
of a weighted linear sum of the function values at all discrete points in the domain of that variable (if one
refers to dimensionless variables, as in what follows, the domain is simply (0,1)). In this way, the differential
equation governing the problem to be solved is approximated by a set of algebraic equations.

At a point z ¼ zi, the rth-order derivative of the function wðzÞ, is given by

drw

dzr

� �
z¼zi

¼
XN

j¼1

A
ðrÞ
ij wj ; i ¼ 1; 2; . . . ;N, (1)

where A
ðrÞ
ij are the weighting coefficients of the rth-order derivative.
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The off-diagonal terms of the weighting coefficient matrix of the first-order derivative turn out to be:

A
ð1Þ
ij ¼

QN
n¼1
nai
ðzi � znÞ

ðzi � zjÞ
QN

n¼1
naj
ðzj � znÞ

; i; j ¼ 1; 2; . . . ;N ; jai. (2)

Eq. (1) can be written easily for a function of two variables as shown in Refs. [3,7].
The off-diagonal terms of the weighting coefficient matrix of the higher-order derivative are obtained

through the recurrence relationship:

A
ðrÞ
ij ¼ r A

ðr�1Þ
ii A

ð1Þ
ij �

A
ðr�1Þ
ij

ðzi � zjÞ

" #
; i; j ¼ 1; 2; . . . ;N; jai, (3)

where 2prpðN � 1Þ.
The diagonal terms of the weighting coefficient matrix are given by

A
ðrÞ
ii ¼ �

XN

n¼1
nai

A
ðrÞ
in ; i ¼ 1; 2; . . . ;N, (4)

where 1prpðN � 1Þ.
Assuming the Lagrange interpolated polynomial as test functions, there is no restriction in the choice of the

grid coordinates.
Very often the shifted Gauss–Chebyshev–Lobatto (GCL) points are used. For nonlinear problems

investigated in Refs. [3,4] the distribution which allows enough accurate results is generated by means of the
following rule:

zi ¼
i � 1

N � 1

� �Nbi=i
ffi
i
p

; i ¼ 1; . . . ;N, (5)

where bi are unknown coefficients to be fixed.
Because of the symmetry of the distribution of sampling points, with N ¼ 6, only b2 and b3 need to be fixed.
For b2 ¼ 1:4 and b3 ¼ 1:2, the resulting distribution in the domain ð0; 1Þ with N ¼ 6 points is

ð0; 0:008398; 0:28093; 0:71907; 0:991602; 1Þ. (6)

This distribution approximates the zeros of the first-order derivative of certain Gegenbauer polynomials.
Gegenbauer polynomials are known to be a particular case of the Jacobi polynomials. An explicit

representation of the ultraspherical polynomials of degree n and order l, Gl
nðzÞ, can be retrieved in Ref. [10].

For l ¼ 1
2
, Gegenbauer polynomials reduce to Legendre polynomials; for l! 0, Gegenbauer polynomials

multiplied by l�1 differ in the limit from Chebyshev polynomials only by a multiplicative constant.
Calculating the zeros of G

0l
ðN�1ÞðzÞ for l ¼ �1:4, after shifting this polynomial to cover the domain ð0; 1Þ, one

has

ð0; 0:008192; 0:284162; 0:715838; 0:991808; 1Þ.

In this paper, the sampling points distribution will be generated by calculating the zeros of the shifted
G
0l
ðN�1ÞðzÞ, for l ¼ �1:4 and for several values of N. As it will be shown afterwards, this distribution, unlike the

usual shifted GCL points, ensures results sufficiently accurate for the proposed method.

3. The generalized equations

3.1. The static case

The proposed approach starts from the formulation of the total potential energy, since the governing
equations for static analysis may be derived by minimizing the total potential energy of the beam Et. So, by
considering a generic Euler–Bernoulli beam, with regard to the static case and in terms of dimensionless
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variables, one has

Et ¼ EL þ EV , (7)

where

EL ¼
1

2

Z 1

0

d2w

dz2

� �2

dz (8)

and

EV ¼ �FwðzF Þ (9)

in the case of a concentrated load F at the abscissa zF or

EV ¼ �

Z zb

za

qðzÞwðzÞdz (10)

in the case of a generic distributed load qðzÞ between the abscissae za and zb.
Assuming that in general zF is not one of the sampling points, it is necessary to explain the dependence on z,

so the solution function, defined in the domain ð0; 1Þ, could be written as proposed in Ref. [1]:

wðzÞ ¼ VðzÞTd, (11)

where d is the discretized grid points vector and VðzÞ is the shape functions vector whose jth component is
given by

V jðzÞ ¼ d1j þ
XN�1
r¼1

A
ðrÞ
1j

r!
zr, (12)

where d1j is the well-known Kronecker operator; discussion about this result can be retrieved in Ref. [1].
The goal of Ref. [1] was to work in analogy to the FEM formulation; here one wants to overcome the

element subdivision where the load condition changes.
For this purpose, a more convenient form for wðzÞ will be adopted:

wðzÞ ¼ dTðAð1Þ
T
CðzÞ þ BÞ, (13)

where BT ¼ f1; 0; . . . ; 0g, Að1Þ is the matrix of the weighting coefficients A
ð1Þ
ij and CðzÞ is the vector of the

weighting functions CkðzÞ derived by the Newton–Cotes integration formulas:

CkðzÞ ¼
Z z

0

YN
i¼1
iak

z� zi

zk � zi

dz. (14)

Eq. (11) has been derived considering that:

wðzÞ � wð0Þ ¼

Z z

0

dw ¼

Z z

0

dw

dz
dz (15)

and by applying the quadrature rules, with the position wð0Þ ¼ w1:

wðzÞ ¼ w1 þ
XN

i¼1

XN

j¼1

CiðzÞA
ð1Þ
ij wj. (16)

Lemma. For every distribution of sampling points follows that:

VðzÞ ¼ Að1Þ
T
CðzÞ þ B. (17)

Proof. If one writes the Lagrange polynomials as follows:

Li ¼ li0 þ
XN�1
j¼1

lijz
j ; i ¼ 1; . . . ;N, (18)
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where

li0 ¼
1 if i ¼ 1;

0 if ia1

(

for every distribution of sampling points follows that:XN

i¼1

lij ¼ 0; j ¼ 1; . . . ;N � 2,

XN

i¼1

lijz
k
i ¼

1 if k ¼ j;

0 if kaj;

(
(19)

with j ¼ 1; . . . ;N � 2 and k ¼ 1; . . . ;N � 2.
This proves the equivalence (17). &

At this point, it is possible, also by using quadrature rules, to rewrite the terms of the total potential energy
as follows:

EV ¼ �FdTðAð1Þ
T
CðzF Þ þ BÞ (20)

if a concentrated load F is applied at zF , or

EV ¼ �
XN

k¼1

C
ða;bÞ
k wkqk ¼ �d

TCða;bÞq, (21)

if there is a distributed load qðzÞ between za and zb, where C
ða;bÞ is the diagonal matrix which components are:

C
ða;bÞ
k ¼

Z zb

za

YN
i¼1
iak

z� zi

zk � zi

dz. (22)

The elastic energy term is firstly rewritten as

EL ¼
d2w

dz2
dw

dz

� �1
0

�
d3w

dz3
w

� �1
0

þ

Z 1

0

d4w

dz4
wdz, (23)

where the terms in the brackets refer to boundary conditions. In fact, considering also the work done by forces
Fi and moments mi applied in z ¼ 0 and 1 and using the quadrature rules, the following equations are
obtained:

XN

j¼1

A
ð2Þ
1j wj ¼ m1;

XN

j¼1

A
ð2Þ
Nj wj ¼ mN , (24)

XN

j¼1

A
ð3Þ
1j wj ¼ F1;

XN

j¼1

A
ð2Þ
Nj wj ¼ F N , (25)

EL ¼
1

2

XN

i¼1

Ciwi

XN

j¼1

A
ð4Þ
ij wj ¼

1

2
dTCAð4Þd, (26)

where C is the diagonal matrix containing the weighting coefficients

Ck ¼

Z 1

0

YN
i¼1
iak

z� zi

zk � zi

dz. (27)

For the stationarity of the total potential energy, one has

CAð4Þd ¼ Cða;bÞq (28)
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for the case of the distributed load qðzÞ between za and zb, or

CAð4Þd ¼ FVðzF Þ (29)

for the case of the concentrated load F at zF , where VðzF Þ is given by Eq. (17).
Eq. (28) reduces to the usual form

Að4Þd ¼ q (30)

in the case of a distributed load over all the span, since C ¼ Cða;bÞ; obviously, if the load is uniformly
distributed, the components of the vector q are equal.

In general, the right side term in Eqs. (30) and (31) can be intended as a generalized load

q ¼ Dq, (31)

where D is a diagonal matrix and q is a vector, with components equal to C
ða;bÞ
k and qk, respectively, in the case

of a distributed load or to VkðzF Þ and F in the case of a concentrated load, with k ¼ 1; . . . ;N.
If there is an axial load, one has to consider in Eq. (7) the additional term

EA ¼ �
1

2
s
Z 1

0

dw

dz

� �2

dz (32)

or by integrating by parts

EA ¼ �
1

2
s

dw

dz
w

� �1
0

þ
1

2
s
Z 1

0

d2w

dz2
wdz, (33)

where the term in the brackets refers to boundary conditions and s is the dimensionless axial load.
So, by applying quadrature rules, one has

EA ¼
1

2
s
XN

i¼1

Ciwi

XN

j¼1

A
ð2Þ
ij wj ¼

1

2
sdTCAð2Þd (34)

and it is possible to write in general

CLd ¼ q, (35)

where

L ¼ Að4Þ þ sAð2Þ.

3.2. The dynamic case

For a dynamic system, the distributed inertia forces must be taken into account. Such inertia forces can be
written in dimensionless terms as follows:

cðz; tÞ ¼ � €wðz; tÞ, (36)

where the mass density obviously does not appear explicitly.
With respect to the point having coordinates ðzi; tjÞ, the quadrature rules give

cðzi; tjÞ ¼ �
XNt

l¼1

A
ð2Þ
jl wil . (37)

By reasoning in terms of generalized load and by substituting in Eq. (35) the vector d with the Nz �Nt matrix
w, if there are no other loads, one has

wAð2Þ
T
þ Lw ¼ 0, (38)

since D ¼ C.
Analogously, one can include the distributed damping forces.
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The use of the matrix w can be justified as follows.
For a generic distributed load one has

EV k ¼ �

Z zb

za

qðz; tkÞwðz; tkÞdz, (39)

i.e. by applying the quadrature rules

EV k ¼ �
XNz

i¼1

qikwikC
ða;bÞ
i ¼ �wT

kC
ða;bÞqk (40)

and in similar way by substituting wðzÞ with wðz; tkÞ in Eqs. (23) and (33) one can write:

ELk ¼
1
2
wT

kCA
ð4Þwk, (41)

EAk ¼
1
2
swT

kCA
ð2Þwk, (42)

where wk and qk are the vectors corresponding to the kth column of the matrices w and q, respectively.
Since, with respect to the single time tk, the stationarity of the total potential energy holds, one can write:

CwkA
ð2ÞT
þ CLwk ¼ qk. (43)

By rewriting Eq. (43) Nt times for the time sequence ðt1; t2; . . . ; tNt
Þ, one has

CwAð2Þ
T
þ CLw ¼ q, (44)

where the generalized load matrix q is given by

q ¼ Cða;bÞq (45)

for a distributed load or

q ¼ VðzF ÞF
T (46)

for a concentrated load, since for the time coordinate tk it follows that

EV k ¼ �F ðtkÞwðzF ; tkÞ ¼ �Fkw
T
kVzðzF Þ, (47)

where

wðzF ; tkÞ ¼
XNz

j¼1

VzjðzF Þwjk, (48)

as will be explained in the next section.

4. The solution in the space–time domain and the IDQ method

Let wðz; tÞ be the solution to a problem defined over the closed domain 0pzp1, where z and t are the space
and time dimensionless variables, respectively.

The mathematical formulation of the problem is in terms of partial differential equations to be satisfied over
the cited domain, as well as certain conditions to be satisfied at each point of the boundary of the domain.

Where closed-form solutions are not achievable, it is necessary to calculate the approximate solutions,
which generally involve domain discretization.

Considering the time domain composed by M subdomains of equal length Dt, the upper limit for the
calculus of the solution is MDt, so in accordance with the IDQ method the solution is computed for M equal
subdomain by retrieving each time the initial conditions from the immediately preceding calculus step. The
solution over the kth interval can be denoted as w½k�ðz; tÞ, even if in the following equations the index ½k� has
been omitted for simplicity.
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In general, the exact solution in each sub-grid can written as

wðz; tÞ ¼ waðz; tÞ þ rðz; tÞ, (49)

where rðz; tÞ is the truncation error and

waðz; tÞ ¼ VT
t w

TVz (50)

is the approximated solution, with the Nz �Nt matrix w containing the values assumed by the function wðz; tÞ
in the grid points of the single space–time domain and the shape functions column vectors depending on the
space and time variables, respectively, which have the same form (see Eq. (17)).

Accuracy of the solution depends on the function rðz; tÞ: for brevity, any consideration about it can be
retrieved in Ref. [12].

Now, to construct the global solution, a variable change is first necessary, since in the single subdomain one
has to refer to a local coordinate 0ptpDt:

t ¼ t� ðk � 1ÞDt; k ¼ 1; . . . ;M.

The approximated solution, calculated with the time limit MDt, can be written as

wðz; tÞ ¼
XM
k¼1

ukðz; tÞ, (51)

where

ukðz; tÞ ¼
w½k�a ðz; tÞ if ðk � 1ÞDtptokDt;

0 otherwise:

(

It is just the case to observe that, by neglecting the truncation error, Eq. (49) can be also written as

wðz; tÞ ¼
XNz

j¼1

Vzj

XNt

i¼1

V tiwji (52)

in particular, with respect to the sampling points of coordinate ti, one has

wðz; tiÞ ¼
XNz

j¼1

Vzjwji ¼ wT
i Vz, (53)

since the vector Vt has all the components equal to zero with exception of the ith component which is unit.
Eq. (53), which also appears in the previous section, is substantially equal to Eq. (11), since the vector wT

i ,
which is the ith column of the matrix wT, can be read as the vector d for the static case.

5. The model

Consider a slender simply supported beam resting on a hardening nonlinear elastic foundation and
which is subjected to a compressive load and to an exciting transverse force F ðtÞ ¼ f cosot which is
assumed to be applied at the abscissa zF . The foundation is supposed to be defined by the following
dimensionless load–displacement relationship: qðzÞ ¼ y1wðzÞ þ y3wðzÞ3, where y1 is the dimensionless
linear Winkler foundation stiffness and y340 is the dimensionless hardening nonlinear elastic foundation
stiffness.

By considering in the generalized load the contribution of the nonlinear Winkler soil, it is immediate to
write for the kth interval

wAð2Þ
T
þ Rwþ y3w3 ¼ C�1VðzF ÞF

T, (54)

where R ¼ Lþ y1I, w3 is a symbolic notation for the Nz �Nt matrix containing the w3
ij elements, F is the

vector of Nt components Fi ¼ f coso½ti þ ðk � 1ÞDt�.
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By substituting the boundary conditions into Eq. (54), the matrix R reduces to the matrix R introduced in
Ref. [2], to give a system of ðNz � 4Þ �Nt equations for the generic kth interval; in this way, the left side of
Eq. (54) can be considered as the matrix form of the Eq. (11) appearing in Ref. [2], even if the time interval
length has not been made explicit through the coefficient a.

By including in Eq. (54) the initial conditions, the number of equations to be solved for each time step
reduces to ðNz � 4Þ � ðNt � 2Þ, as shown in Ref. [2], so one has a reduced matrix wr of unknowns.

It is just the case to observe now that all the considerations about the stability and the accuracy of
the IDQ method presented in Ref. [3] for a two-degree-of-freedom system can be extended to a multi-
degree-of-freedom system. By reading in wr, as in Ref. [3], the starting value of the row index as 1 instead
of 3 and the final value Nz � 4 instead of Nz � 2, the equation involved by the stability analysis presented in
Ref. [3]

wiþ1

_wiþ1

" #
¼ CðsÞ

wi

_wi

" #
(55)

holds with wT
iþ1 ¼ w1ðiþ1Þ; . . . ;wðNz�4Þðiþ1Þ

� �
and _wT

iþ1 ¼ ½ _w1ðiþ1Þ; . . . ; _wðNz�4Þðiþ1Þ� and where

CðsÞ ¼
C
ðsÞ
11 C

ðsÞ
12

C
ðsÞ
21 C

ðsÞ
22

" #
,

with

C
ðsÞ
11 ¼M�

A
ð1Þ
11

A
ð1Þ
1Nt

INz�4,

C
ðsÞ
12 ¼M0 þ

1

A
ð1Þ
1Nt

INz�4,

C
ðsÞ
21 ¼ Pþ q1INz�4,

C
ðsÞ
22 ¼ P0 þ

A
ð1Þ
NtNt

A
ð1Þ
1Nt

INz�4.

Matrices M, M0, P and P0 have dimension Nz � 4 and have the same form shown in Ref. [3] but with

Bij ¼ RijINt�2 þ dijS

by having substituted the index N with Nt in all the formulas appearing in Ref. [3] and by considering that the
matrices V and W in Eqs. (10) and (11) of Ref. [3] can be seen as diagonal matrices where the diagonal
elements are the row vectors ðA

ð1Þ
12 . . .A

ð1Þ
1ðNt�1Þ

Þ and ðq2 . . . qNt�1
Þ, respectively, which are repeated Nz � 4 times.

6. Some numerical results

In order to check the behaviour of the method, first the static case has been explored.
Numerical investigations revealed that the proposed method deals with Dirichlet boundary conditions at

each edge of the one-dimensional space model, i.e. clamped–clamped, clamped–hinged or simply supported
beams show sufficiently accurate results for each load condition, as it will be shown.

Instead, cantilever beams do not ensure good approximation without some precautions; this argument will
be treated in a separate paper.

Two kind of load condition have been considered:
(1)
 a uniformly distributed load between different za and zb;

(2)
 a concentrated load at different abscissas zF .
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Table 1

Analytical and numerical results for a clamped–hinged beam with a unit uniformly distributed load on half-span

Exact results N ¼ 12 Error (%) N ¼ 17 (GLC) Error (%)

wð0:5Þ 0.003092 0.003093 �0.020 0.003076 0.535

f1ð0:5Þ �0.004883 �0.004869 0.291 �0.004844 0.785

f1ð1Þ 0.014323 0.014328 �0.034 0.014191 0.923

Mð0Þ �0.054688 �0.054678 0.018 �0.054952 �0.483

Mð0:679687Þ 0.051300 0.051494 �0.378 0.051004 0.577

Tð0Þ 0.179687 0.185497 �3.233 0.244986 �36.340

Tð1Þ �0.320312 �0.314503 1.814 �0.255016 20.385

Table 2

Analytical and numerical results for a simply supported beam with a unit uniformly distributed load between za and zb

Exact results N ¼ 12 Error (%) N ¼ 19 Error (%)

wð0:5Þ 0.001427 0.001410 1.215 0.001432 �0.345

f1ð0Þ �0.005438 �0.005359 1.439 �0.005472 �0.639

f1ð1Þ 0.003896 0.003839 1.461 0.003900 �0.111

Tl 0.075 0.075623 �0.830 0.074888 0.149

Tr �0.025 �0.024791 0.837 �0.024949 0.202

Table 3

Analytical and numerical results for a clamped–clamped beam with a unit concentrated load at zF ¼ 0:8

Exact results N ¼ 8 Error (%) N ¼ 13 Error (%) N ¼ 21 Error (%)

wð0:5Þ 0.001833 0.001854 �1.145 0.001833 0.023 0.001840 �0.356

wð0:8Þ 0.001365 0.001332 2.441 0.001359 0.476 0.001371 �0.412

fð0:8Þ 0.007680 0.007491 2.461 0.007674 0.076 0.007734 �0.703

Mð0Þ �0.032 �0.037289 �16.528 �0.033158 �3.619 �0.031634 1.143

Mð1Þ �0.128 �0.149829 �17.054 �0.124296 2.894 �0.129320 �1.031

Tl 0.104 0.099485 4.341 0.108678 �4.498 0.102290 1.644

Tr �0.896 �0.689963 22.995 �0.815480 8.987 �0.893540 0.275

Table 4

Analytical and numerical results for a clamped–hinged beam with a unit concentrated load at zF ¼ 0:3

Exact results N ¼ 12 Error (%) N ¼ 21 Error (%)

wð0:3Þ 0.004079 0.004109 �0.741 0.004071 0.193

wð0:5Þ 0.005344 0.005425 �1.526 0.005334 0.175

fð0:3Þ �0.014018 �0.014209 �1.366 �0.013973 0.320

fð1Þ 0.01575 0.016399 �4.118 0.015551 1.261

Mð0Þ �0.1785 �0.186494 �4.478 �0.175207 1.845

Tl 0.8785 0.790120 10.060 0.881604 �0.353

Tr �0.1215 �0.124522 �2.487 �0.118805 2.218
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Analytical and numerical results, are reported in Tables 1–6 and depicted in Figs. 1 and 2. In tables,
f is the rotation, M is the bending moment, T the shear stress; the number between brackets is the
abscissa value.
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Table 6

Approximated and exact values of Mmax and the d shift

zF za � zb N d Approximated Exact Error (%)

(CC) 0.8 � 13 0.0552 0.04829 0.05120 5.686

(CC) 0.8 � 21 0.0212 0.05084 0.05120 0.696

(CH) 0.3 � 12 0.0633 0.08039 0.08505 5.481

(CH) 0.3 � 21 0.0332 0.08268 0.08505 2.789

(CH) – 0.2– 0.3 12 0.0332 0.00612 0.00612 0.029

(SS) – 0.2–0.3 12 0.0140 0.01728 0.01781 2.989

(SS) – 0.2–0.3 19 0.0004 0.01782 0.01781 �0.020

(SS) 0.8 – 8 0.0563 0.16163 0.16 �1.021

(SS) 0.8 – 13 0.0387 0.15010 0.16 6.185

(SS) 0.8 – 16 0.0292 0.15772 0.16 1.424

(SS) 0.1 – 8 0.0889 0.07869 0.09 12.569

(SS) 0.1 – 13 0.0426 0.08966 0.09 0.376

(SS) 0.5 – 13 0 0.23532 0.25 5.873

(SS) 0.5 – 19 0.0049 0.24033 0.25 3.868

Fig. 1. The bending function in the case of a concentrated load at zF ¼ 0:5 for (b) a simply supported beam with N ¼ 19 and at zF ¼ 0:8
for (a) a clamped–clamped beam with N ¼ 21, a simply supported beam (c) with N ¼ 8, (d) with N ¼ 16 (— exact, - - - approximated).

Table 5

Analytical and numerical results for a simply supported beam with a unit concentrated load at zF ¼ 0:1

Exact results N ¼ 8 Error (%) N ¼ 13 Error (%)

wð0:1Þ 0.0027 0.002467 8.618 0.002760 �2.213

fð0:1Þ �0.024 �0.022173 7.614 �0.024507 �2.114.

fð1Þ 0.0165 0.014938 9.467 0.016768 �1.622

Tl 0.9 1.037600 �15.289 0.965581 �7.287

Tr �0.1 �0.110450 �10.450 �0.110074 �10.074
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Fig. 2. The bending function (a) and the shear function (b) for a clamped–hinged beam with a unit uniformly distributed load on half-

span; the bending function for (c) a simply supported beam ðN ¼ 19Þ and for (d) a clamped–hinged beam ðN ¼ 12Þ with a unit uniformly

distributed load between za ¼ 0:2 and zb ¼ 0:3 (— exact, - - - approximated).

Table 7

Approximated natural frequencies of a simply supported beam

N l ¼ �1:4 Error (%) l ¼ 0 Error (%)

(a) mode 1—exact frequency 9:869604
8 9.87089 �1:303E� 02 9.89127 �2:195E� 01

12 9.86960 �7:888E� 07 9.86961 �3:049E� 05

16 9.86961 �6:199E� 06 9.86963 �2:942E� 04

20 9.86090 8:821E� 02 9.81689 5:341E� 01

(b) mode 2—exact frequency 39:478418
8 39.34515 3:376E� 01 40.93409 �3:687Eþ 00

12 39.47846 �1:175E� 04 39.48020 �4:526E� 03

16 39.47842 �3:846E� 06 39.47843 �2:314E� 05

20 39.48034 �4:874E� 03 39.49352 �3:824E� 02

(c) mode 3—exact frequency 88:826439
8 98.66892 �1:108Eþ 01 75.49070 1:501Eþ 01

12 88.82130 5:788E� 03 88.51341 3:524E� 01

16 88.82644 3:430E� 06 88.82573 8:010E� 04

20 88.82510 1:506E� 03 88.80435 2:486E� 02

(d) mode 4—exact frequency 157:9136704
8 137.31390 1:304Eþ 01 99.76259 3:682Eþ 01

12 157.54498 2:335E� 01 154.36100 2:250Eþ 00

16 157.91335 2:035E� 04 157.89366 1:267E� 02

20 157.91104 1:667E� 03 157.89754 1:021E� 02
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In Table 1, a comparison between results obtained by the distribution proposed with l ¼ �1:4 and those
obtainable by the GLC points is presented; generally, the proposed distribution yields sufficiently accurate
results with a value of N smaller than the one required by the use of the GLC points.
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Table 8

Approximated natural frequencies of a clamped–hinged beam

N l ¼ �1:4 Error (%) l ¼ 0 Error (%)

(a) mode 1—exact frequency 15:4182057
8 15.42207 �2:509E� 02 15.48251 �4:171E� 01

12 15.41821 �3:124E� 06 15.41823 �1:298E� 04

16 15.41821 4:008E� 06 15.41823 �1:647E� 04

20 15.41370 2:925E� 02 15.38027 2:461E� 01

(b) mode 2—exact frequency 49:96486203
8 49.47410 9:822E� 01 51.22251 �2:517Eþ 00

12 49.96484 3:937E� 05 49.96524 �7:532E� 04

16 49.96487 �1:230E� 05 49.96487 �7:710E� 06

20 49.96590 �2:071E� 03 49.97933 �2:896E� 02

(c) mode 3—exact frequency 104:248
8 114.72462 �1:005Eþ 01 87.60337 1:597Eþ 01

12 104.24526 2:633E� 03 103.82384 4:069E� 01

16 104.24768 3:067E� 04 104.24645 1:484E� 03

20 104.24538 2:514E� 03 104.21902 2:780E� 02

(d) mode 4—exact frequency 178:27
8 193.15432 �8:349Eþ 00 127.58017 2:843Eþ 01

12 177.73329 3:011E� 01 175.70135 1:441Eþ 00

16 178.26960 2:242E� 04 178.25959 5:841E� 03

20 178.26860 7:866E� 04 178.25887 6:245E� 03

Table 9

Approximated natural frequencies of a clamped–clamped beam

N l ¼ �1:4 Error (%) l ¼ 0 Error (%)

(a) mode 1—exact frequency 22:3733
8 22.38083 �3:364E� 02 22.43721 �2:856E� 01

12 22.37329 6:615E� 05 22.37331 �2:414E� 05

16 22.37329 5:700E� 05 22.37329 5:537E� 05

20 22.38423 �4:884E� 02 22.34699 1:176E� 01

(b) mode 2—exact frequency 61:6728
8 59.76021 3:101Eþ 00 63.54792 �3:040Eþ 00

12 61.67270 1:583E� 04 61.67555 �4:455E� 03

16 61.67282 �3:422E� 05 61.67282 �3:816E� 05

20 61.68199 �1:491E� 02 61.68410 �1:833E� 02

(c) mode 3—exact frequency 120:903
8 166.00183 �3:730Eþ 01 114.08716 5:637Eþ 00

12 120.93787 �2:884E� 02 120.69841 1:692E� 01

16 120.90340 �3:279E� 04 120.90287 1:053E� 04

20 120.91335 �8:558E� 03 120.87725 2:130E� 02

(d) mode 4—exact frequency 199:859
8 212.34903 �6:249Eþ 00 137.58706 3:116Eþ 01

12 198.32520 7:674E� 01 197.36887 1:246Eþ 00

16 199.85922 �1:090E� 04 199.84740 5:806E� 03

20 199.86533 �3:166E� 03 199.85996 �4:781E� 04
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From tables, one observes that displacements are often well reproduced even for N ¼ 8, but in
order to preserve higher-order derivatives, it is necessary to increase N. In some cases, increasing the
number of sampling points does not yield better results locally, but improves the result globally over
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Table 10

Approximated natural frequencies of a simply supported beam: comparison between errors generated by different numerical

methods (8 dof)

l ¼ �1:4 4 FE 2 MQE ðb2 ¼ 2:2Þ

�7:888E�07 �2:599E� 02 �5:447E� 02

�1:175E�04 �3:946E� 01 �2:959E� 02

5:788E�03 �1:827Eþ 00 �3:566E� 01

2:335E�01 �1:099Eþ 01 �4:232E� 01

�2:899Eþ00 �1:291Eþ 01 �8:098Eþ 00

7:092Eþ00 �2:399Eþ 01 �4:839Eþ 01

�6:903Eþ01 �3:648Eþ 01 �6:415Eþ 01

�3:645Eþ01 �2:716Eþ 01 �7:479Eþ 01

Table 11

Approximated natural frequencies of a simply supported beam (N ¼ 8, s ¼ 0:09)

l ¼ �1:4 Error (%) l ¼ 0 Error (%)

9.87089 �0.013 9.89127 �0.219

39.34515 0.338 40.93409 �3.687

98.66892 �11.081 75.49070 15.013

137.31390 13.045 99.76259 36.825
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the entire domain. In the case of a concentrated load, the step shape characterizing the third-order
derivative is not achievable even if the number of sampling points is high, but, considering the
frequent disturbance at the ends, the shear on the left-hand and on the right-hand respect to zF

can be expressed as the arithmetical average of the calculated values Ti for i ¼ 3; . . . ; kl and
i ¼ kr; . . . ; ðNz � 2Þ, respectively, giving in tables Tl and Tr, where kl ¼ Nz=2 and kr ¼ ððNz=2Þ þ 1Þ if zF ¼

0:5 or, for the other cases, kl ¼Ml � 1 and kr ¼Mr þ 1, if there is at least one point in each of
the resulting intervals, by indicating with Ml and Mr the point closest to zF from left or from
right, respectively.

The maximum value of the second-order derivative can turn out to be slightly shifted with respect to the true
abscissa. This shift (d) in the corresponding bending moment value is reported in Table 6 for a
clamped–clamped (CC) beam, for a clamped–hinged (CH) beam and for a simply supported (SS) beam to
show how it changes by varying N.

Often, especially in the case of a concentrated load, the greater the approximation of Mmax the greater the
disturbance of the related function (Figs. 1a and b). Besides, a sufficient approximation of Mmax does not
imply a good approximation for the whole function (Figs. 1c and d). In the same way, a good approximation
of the bending function does not imply a good approximation of the displacement and the rotation functions
and vice versa (Tables 4 and 5).

In general, the best results are achievable for distributed loads, even if zb is close to za (Fig. 2).
In Tables 7–9 the first four frequencies computed for different beam models with s ¼ 0 and for

l ¼ �1:4 and 0 are reported for increasing values of N. Computation with l ¼ �1:4 seems to
ensure sufficiently accurate results more quickly. An increase in loss of accuracy for higher
frequencies however occurs. This drawback is well-known in the elements approach, so in Table 10 a
comparison between errors produced by quadrature rules (l ¼ �1:4;N ¼ 12) or by an appropriate
number of elements for the finite element method and for the modified quadrature element
method is proposed for a simply supported beam. In general, the choice l ¼ �1:4 seems to be convenient
again.
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Fig. 3. Simulation of a four-degree-of-freedom system: (a) curves wðz; tÞ and (b) �w00ðz; tÞ for t ¼ 0;T ; 2T ; . . . ;mT ; (c) time history

(0ptp50) and (d) Poincaré map (2400 points) of the first oscillator; (e) time history (0ptp50) and (f) Poincaré map (2400 points) of the

second oscillator.
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7. Simulations

The case s ¼ 0:09, y1 ¼ 0, y3 ¼ 100:01, f ¼ 1, o ¼ 300 is discussed for a four-degree-of-freedom system
and, for comparison, for a two-degree-of-freedom system. In Table 11, the natural frequencies (i.e. the square
roots of the eigenvalues of the matrix R) of the four-degree-of-freedom system are reported for l ¼ �1:4 and
for l ¼ 0.
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Fig. 4. Simulation of a two-degree-of-freedom system: (a) curves wðz; tÞ and (b) �w00ðz; tÞ for t ¼ 0;T ; 2T ; . . . ;mT ; (c) time history

(0ptp50) and (d) Poincaré map (2400 points) of the first oscillator.
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By considering a free undamped four-degree-of-freedom system with s ¼ 0:09 and Dt ¼ T4=5 one has,
being T4 the period of the fourth approximated vibration mode,

CðsÞ ¼

0:602 0:248 �0:108 0:059 0:862 0:087 �0:039 0:022

0:179 0:828 0:126 �0:079 0:063 0:940 0:044 �0:029

�0:079 0:126 0:827 0:179 �0:029 0:044 0:940 0:063

0:059 �0:108 0:248 0:602 0:022 �0:039 0:087 0:862

�0:713 0:434 �0:172 0:082 0:602 0:248 �0:108 0:059

0:313 �0:306 0:220 �0:128 0:179 0:828 0:126 �0:079

�0:128 0:220 �0:306 0:313 �0:079 0:126 0:827 0:179

0:082 �0:172 0:434 �0:714 0:059 �0:108 0:248 0:602

2
66666666666664

3
77777777777775
,

with the conjugate complex eigenvalues

l1 ¼ 0:3090129� 0:9510578I ,

l2 ¼ 0:6193418� 0:7851214I ,
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l3 ¼ 0:9359706� 0:3520782I ,

l4 ¼ 0:9959568� 0:0898333I ,

which have unitary modulus, so the stability condition is satisfied.
The choice Dt ¼ T4=5 is necessary to ensure the accuracy of the solution, measured through the ratio

T4=Tex
4 which results to be 0:9999965.

For a discretized system with a limited number of degrees of freedom is not very significant to draw the
solution in the entire domain, so just the curves wðz; tÞ (Figs. 3a and 4a) and �w00ðz; tÞ (Figs. 3b and 4b) for
t ¼ 0;T ; 2T ; . . . ;mT are shown, where T is the period of the forcing term. The length of the time interval to
compute the solution is assumed to be Dt ¼ T=5. The time histories and the Poincaré map projections onto an
appropriate number of planes are shown in Figs. 3 and 4 relatively to a four-degree-of-freedom system and to
a two-degree-of-freedom system. As one can observe, the oscillators in both examples have an almost-periodic
behaviour, but in the case of a two-degree-of-freedom system, the Poincaré map reveals just one closed loop.

8. Conclusions

In this paper, thanks to certain Gegenbauer polynomials, a generalization of the older version of the IDQ
method is presented. A lemma, which states a new form for the displacement function, in conjunction with an
approximation method to reduce element subdivision and based on differential quadrature rules, allows the
so-called generalized equation to be written easily in matrix form. In order to check the approximation
method, simple but representative structural examples have been investigated. Finally, a multi-degree-of-
freedom system has been successfully simulated by the IDQ method.
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